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Abstract. The subjects of the investigation are single atoms, for instance isolated in a Paul 
trap, which are driven by laser fields while their resonance radiation is measured by photon 
counters. For a rather wide class of experimental setups or theoretical models, a method 
is developed to determine the statistics of the photons obseNed. In contrast lo other 
approaches it avoids referring to ’continuous measurements’ or similar concepts, but tries 
to stay as far an possible within the framework of ordinary quantum mechanics. The method 
is illustrated by application to simple models. 

Introduction 

The development of the Paul trap made the spectroscopicinvestigation of single atomic 
systems possible. This offers the opportunity for various experiments, similar to that 
proposed by Dehmelt [l]. They consist essentially of an isolated ion driven by one or 
several strong laser fields, while the fluorescent light is observed by photon multipliers. 

As a model of the internal dynamics, one usually considers an N-level system 
(atom) coupled to classical, time-dependent fields (laser) and to the quantized radiation 
field, aprocedure that has proved to work well in similar quantum optical investigations. 
The theoretical description of the observation of the radiation field is commonly based 
on Glauber’s detector theory [2]. Concerning the experiments described above this 
procedure has been used, for example, in [3] and [4]. Since, however, in this case the 
state of the radiation field is determined only by the ion, while the ion remains essentially 
unaffected by the state of the field, another simpler method, which can be expected 
to be equivalent, is to apply the formal theory of quantum measurements directly on 
the observables of the radiation fieldt. 

In the present article this second method will be carried out in the following way: 
one considers a class of (idealized) observations of the radiation field performed by 
a counter surrounding the atom, which can be opened during arbitrary intervals. These 
observations are described by means of a quantum mechanical model within the 
framework of the theory of measurement due to von Neumann and Liiders [ 5 ] .  It turns 
out that for all practically possible measurements the results are compatible with a 
uniquely determined classical counting process in the following sense. The probabilities 
that the detector gives a signal (or not) during a certain time interval are equal to the 

t In comparison to the previous method, this may be regarded as a shift of the ‘cut’ towards the atom, by 
which the counters are no longer described dynamically. 
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probabilities that during this period at least one event (or no event) of the process 
appears. This suggests that this process can be interpreted as the 'process of photon 
emission' and also be used for a description of more realistic experiments (which in 
principle could be treated in the same way as the idealized ones). 

Similar approaches have already been followed by other authors, e.g. [6-91, but 
have always been closely connected to specific models. It is the aim of the present 
paper to develop this method in as general a way as possible seeking to avoid some 
of the restrictions and additional assumptions made in the quoted work. For instance, 
I try to stay, as far as possible, within ordinary quantum mechanics and do not refer, 
as in [6], to a concept of continuous measurement [lo]. Furthermore I want to 
emphasize that to construct the counting process an interruption of the time evolution 
by numerous hypothetical measurements, as appears to be suggested by the approach 
in [SI and similarly in [9], is not necessary. (Indeed it turns out that the results of the 
measurements are more compatible with the process, the smaller is the number of 
observations. From the technical point of view the present investigation is partly based 
on the projector formalism (Nakajima, Zwanzig). This was the case in 171, too; it 
seems, however, that the formal possibilities of that method have not been exhausted 
there. 

The paper is organized as follows. Section 1 contains a short sketch of the idealized 
measurements on which the investigation is based. In section 2, the central part of the 
article, these measurements are described theoretically and conditions for the existence 
of a compatible classical counting process are discussed. Some more technical items 
and a discussion of the approximations (Born-Markov) are deferred to section 3. The 
last section contains simple examples which demonstrate the applicability and indicate 
the connection of the paper to previous work. In the appendix it is shown that the 
approach developed in [8], within the framework of its concomitant approximations, 
yields essentially the same results as the method advocated here. 

1. Cbaraeterization of the basic experiments 

The observations taken as the starting point of the investigations will be idealized but, 
nevertheless, are assumed to be actually performed and thus chosen to be typical for 
single-atom experiments. As indicated in the introduction they consist of surrounding 
the atom by a broad-band 4~-counter being opened at prescribed times fi, i = 1, . . . , n, 
and closed again at later times ti + Ai < ti+, . After each shutting one of two possible 
(macroscopic) results can be registered. Either one 'received a signal' or one 'received 
no signal'. (The restriction on counters with only two states is for the sake of simplicity 
only.) The experiments are performed on an ensemble of systems (consisting of atom 
and field), which is at the initial time to prepared according to a procedure po (meaning 
not yet a density matrix). 

The statistics of the results can be expressed by the common probabilities 

W ( " ) ( L L # n , . . . ,  f,Ai#,Ifopo) (1) 

where 

0 for no signal obtained 
# = { >  for signal obtained. 

The following investigations aim to derive these common distributions theoretically 
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from the dynamics of a suitable quantum mechanical model and with the theory of 
measurement used in the same way as yon Neumann and Liiders [5]. 

2. Theoretical treatment 

2 1 .  The class of models 

The dynamical problem considered will be the quantum dynamics of an N-level system 
(atom ( a ) )  coupled to a quasicontinuous set of oscillators (the modes of the radiation 
field ( b ) ) .  The Hamilton operator is assumed to have the form 

H (  t )  = Ha( t )  + Hb + Hob 

where 

H . ( t ) = H , +  v.(t) 
describes the free atom and the influence of the laser fields, 

Hb =C o.a:a, 
n 

the free radiation field ( n  may be a multi-index, i.e. (k, A))  and 

Hob = (@.a: + KzC:a.) 
n 

the coupling (dipole approximation). C. are operators acting on the SI of tl 
Thus, an ensemble p prepared at time t’ will develop, up to time t, into 

T( 1, t ’ ) ~  (=U( t, t ‘ ) p U (  t, t ’ )+)  

with 

d 
d t  - T(t,  t ’ )p=  -i[H(t), T( t ,  t ’ ) p ]  u t ,  t b  = P. 

@ab)  

atom. 

(3) 

(4) 

(Superoperators, i.e. operators acting on Hilbert-space operators, will be denoted by 
bold letters in the following.) 

2.2. On the modelling of the observations 

The actions being performed during the measuring procedure at the times 

to, t i ,  f i  + A i ,  t , ,  t ,+A,, .  . . I L, tn + A n  

will be described in the frame of the model by the following operations and formal 
measurements. 

(i) At the initial time to the ensemble considered is assumed to be described by a 
density matrix p . o ~ l u ) ( u l  ( Iu)  is the vacuum of the radiation field). 

(ii) At times ti the radiation field is set back instantaneously into the vacuum state?. 
If immediately before such an operation the state was p, so it is shortly afterwards 
( T r , p ) x l ~ ) ( 4  

t TO motivate this operation, one may think of the m u t e r  being substituted by one filling the hole space 
up to a near neighbourhood of the atom, and being ‘free of field excitations’ before the shutter is opened. 

..... 
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(iii) At the times t ,  + A, formal measurements are performed on the radiation field, 
which are defined in the following manner: given a (not necessarily normed) state p 
the probability of obtaining 'no signal' is 

and the density matrix of the sub-ensemble sorted out according to this effect 

Trd(1, x P'h) x Iu)(ul= (1 .  x P'h(1. x PE). (6) 
The density matrix of those systems sorted according to 'signal obtained' on the other 
hand is set 

Trh((leXp;)P)Xlu)(vl with Pc = lh -Pt. (7) 

Remark The quotient of the trace of the new density matrices and the trace of p (i.e. 
the probability (5) in the first case) denotes the part of the systems in the respectively 
sorted sub-ensembles. 

Remark The operation (6)  is just the von Neumann-Luders rule for the description 
of the sorted sub-ensemble and (7) suggests itself as a generalization if the radiation 
field is set back to the vacuum due to absorbing measurements. 

The nth-order probabilities introduced in section 1 can now be computed, theoreti- 
cally, by iterating all these operations specified according to the respective # and a 
final performance of the trace. Using the notation above their form becomes, however, 
rather involved. The probability of receiving a signal in only one prescribed interval 
is, for example, given by 

W ( ' ) ( f t h >  1fop.o) = W ( L  X P;)T(ti + A I ,  fi)(Trb T(ti, fo)(PaoXlu)(ul)) X Iu)(ull 

and corresponding longer expressions would result for higher order probabilities. It 
is, therefore, useful to introduce the following time evolutions contracted on the atomic 
space. 

(i) The unconditioned contracted evolution (Bloch dynamics): 

Fa(C t')Pa:=Tb(T(4 t ' ) (P.  Xl'-')(ul)). (8) 

T%t, t'be:=Trb((1,, xPOb)T(f, t Y p .  xlu)(ul)). (9) 

T:(t, t ' ) ~ .  :=Trd(l, x P;)T(t, t ' ) (p-  x IWl)). (10) 

T:( t, t ' )  = Fact, t') - TO.( t, t ' ) .  ( 1 1 )  

(ii) The (with respect to PE) conditioned contracted evolution: 

(iii] The (with respect to P;) conditioned contracted evolution: 

From these definitions it necessarily follows that 

By means of these operators the common probabilities ( l ) ,  as calculated from quantum 
theory, can be written 

W ' " ' ( L A n + n , .  . . , tiAi#i/topao) 

=Tr. (T~~(t ,+A. ,  tn)Fa(tn, tn-l+A.-I) ... T,fI(t,+AI, tl)Fa(h, tdpao) .  
(12) 
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In the following the question, whether a classical counting process can be found 
being adopted to these common probabilities in such a way that 'a signal' corresponds 
to at least one event during the interval and 'no-signal' to no event in the interval, will 
be investigated. The result (12) shows that this will be possible if, and only if, the 
contracted time evolution operators (8) and (9) satisfy the conditions 

TAt, to)=~~T,(t,t,)F~.(t,,fo) 
To,(t, to)=TO,(t, fi)TO.(fi, to) 

(13) 

and, following from those, 

T:(t, to)= T 3 t ,  t , ) ~ : ( t , ,  t o ) + T 3 t ,  t h ~ O . ( t , ,  to)+TO.(t, t , )T : ( t , ,  io). 
This would guarantee, as one can easily see, the compatibility conditions of the 
(calculated) common distributions (la), i.e. 

W ( ~ A # 2 1 ~ 0 1  P o ) = C  W ( ~ & # Z ,  t lAl#l l to ,  Po) 
*I 

and respective relations for higher order common probabilities, which imply the 
existence of a point process. 

The conditions (13) can never be fulfilled for a contracted dynamics. However, as 
demonstrated in [ l l ]  one has instead, for T. = Fa, TO. and f-r,, r l - t o  exceeding a 
characteristic time span T, (the Markov time, see next sectiont) 

TJkto)= u t ,  ~ l ) ( L + W ~ I ) ) ~ d ~ l ,  to). (14) 
This allows the following important conclusion: if the 'piecing-effect operator' E.(t) 
is sufficiently small then there can certainly be found a classical counting process 
describing the common distributions for orders not too high (i.e. not too many 
measurements) sufficiently well. And, indeed, a natural way arises to construct such 
a process. For, as shown in section 3, the operators Fe and 2 satisfy approximately 
the following initial-value problems: 

d 
-Td(t, t ' ) f .=sO.( t )Td( t ,  t')p. t ) f .  = P o  (15a) d t  
d -  

- -T.( t ,  t')f,=p',(f)mt, Ofa To(4 t ) f .  = f a .  (156) dt  
Here 'approximately' means: 

(i) if t - t ' > > T , ;  
(ii) up to a (multiplicative) initial error of the same order as the piecing-effect. 

The solutions of the differential equations (15) have, by definition, the (semigroup) 
property (13) and thus determine the counting process which, for not too many 
observations and not too short measuring intervals, describes the idealized measure- 
ments introduced in section I$. Due to the compatibility condition it is determined 
already by 

W(") ( tnAn, .  .. , t ,Al l topo)= W("'( tnAn>,  . . ., t ih i> ,  . . . , t ,A ,>  Itopa) (16) 
i.e. the probability that photons are registered during each of the measuring intervals. 

t In the radiation problems considered here the Markov time is of the order of the (smallest) inverse 
transition frequency. 
t From the investigations in [Ill it  can be expected that the correlation time and the piecing-effect are, in 
the case of the radiative decay considered here, SO small that all performable measurements can be described 
by the COnstNCted process. This justifies our use of the term 'emitted photons'. 
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Further properties of the process can be derived only for restricted classes of 
models. For such investigations the following properties of the generators 3: and 
derived in section 3 turn out to be useful: 

(i)  ga(t)  has the decomposition 

Pa(t)+ 3:(t)+P:. ( 1 7 )  

(ii) The action of 3: can be written in the form 

~ 3 f ) p .  = - i ( % ( b  - p . E ( t ) )  with Re( t )  := H,( t )  - io,,. ( 1 8 )  

From (17) it follows immediately: 

F J t , t ' ) = T ; ( f , t ' ) +  dse(f ,s)SehF&,t ' )  (20) J 
and a similar pair of equations with Fa and TI: commuted in the integral. 

This allows, for example, the following transformations of the probabilities (16): 

J c,+A, J r ,  

x3::Fa(s2, s)3:T".s, si)SiFo(s1. f0)P.o). 

In the same way the higher probabilities may be expressed in similar terms. To calculate 
them requires, therefore, the solutions of the differential equations (15a) and (15b) 
and the determination of the superoperator 3:. 

As obvious from the representation (21)  the processes become especially simple, 
if the models have the property that independently of pa always 

3 : p .  = p:A(pn) SP.(P3 = 1 (22) 

holds (with a scalar function A and a fixed density matrix p:). For then they are 
renewal processes with: 

Wo(t, t'):=Tra(c(t, t ' )p : )  

being the probability that after an event in 1' none will appear up to 1 ;  

Wl(l, t '):=h(T:(t ,  t ' )p: )  

being the probability density that after an event in t' the next will be registered in t; 

W&, t'):=.4(T&, t ' )p2 )  

being the probability density that after an event in f '  any will happen in t. 
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The last two densities are linked by the integral relation 

%';(t,t')= W,(t,t')+ ds  Wl(t,s)Wl(s,t') 1,: 
which holds for renewal processes and follows here from (20). 

Concerning the class of models which fulfil (22) it is, therefore, not necessary to 
solve the Bloch equations (15b) ,  but one can confine oneself on the system of differential 
equations (Ma),  or, due to (18), equivalently determine the effective time evolution- 
operator according to 

d -  - u(t,t')=-iR(t)L-I(t,t'), 
d t  

The relevance of this class of models will be demonstrated by the examples in section 
4. (Simple generalizations of (22), e.g. as a sum of two terms, are obvious.) 

3. Calculation of the operators &'t(t) and 3: 

As shown in the preceding section, the calculation of the photon statistics requires the 
knowledge of the generators &':( t )  (or & ( t ) )  and 3;. To this end one has to construct 
linear differential equations approximately fulfilled by c(t, t')p. and P=(t, t')p.. These 
can be obtained for both contracted time development operators in one calculation, 
setting 

Ta(t, t')pn:=Trh((la x&)T(t, t')(p.xI~)(vl)) (25) 

where Pb represents either Pg or l b .  
To derive the differential equation the projector formalism is especially suited, for 

it elucidates the nature of the approximations (Born-Markov) involved. The technical 
procedure has been presented extensively in [lllt. Therefore I shall confine myself 
mainly to the results and their discussion. 

In a first step one can demonstrate that To(t, t ' )  satisfies exactly an integrodifferential 
equation 

!a'-r' (26) 
d 
-TT,(t,t')p,=-i[H,(t), T,(t,t')p,]- dsK.(t, t-s)T.(t-s,t')pe. 
dt 

The integral kernel is a complicated superoperator on the atomic space which, however, 
allows for t - t' exceeding some characteristic time T, the substitution 

ja"" ds KO( 1, t - s)T. ( t  - S, t ' )  = (27) 

To. denotes the free atomic time evolution. Thus, for t - t' sufficiently large, To( t, 1 ' )  
satisfies a differential equation; and substituting the solution of (26) by that of the 
initial value problem 

ds K.( t, t - s)To,( t - S, t )  T.( t, t ' ) .  

(28) 
d 
d t  --T.(t, t ' ) p , = ~ e , ( t ) T , ( t ,  t')p, TAt, t b ,  = Po 

t See also [IZ]. 
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with 

(i.e. taking T.(t, t') to satisfy the differential equation for all times) we get the Markov 
approximation. T, will therefore be called Markov time. G,,(t)(K0(.;)) can be approxi- 
mately calculated (Born approximation) to yield 

- 
GAf)p.= J dsTrb((l.XPb)[ff.b, Too, t-S)[Hab, Toe(t-4 f)f .Xl~)(ulll) .  (31) 

Remark. Applying the Markov approximation results in an initial error caused by the 
deviation of the solutions of (26) and (28) during the initial interval ( t -  t'< T ~ ) .  It is 
plausible (see [ l l ] )  that an error of similar order will arise at each 'piecing' of the 
(total) time evolution in points iAt i.e. by an experimentally performed operation 
described by a resetting of the density matrix according to p(f..)+ 
Trb(( 1, x Pb)p( TA)) x lu)(ul, for such an operation has no correspondence in the solution 
of (28). Therefore, the solution of the differential equation approximates best to the 
'unpieced' time evolution or, in other words, the Markov approximation restricts the 
number of piecings. Thus approaches seem misleading which associate the solution 
of (28) in the case of T t ( t ,  t') (where the piecing corresponds to a measurement and 
sorting out the no photon subensemble) to a dense series of 'gedanken measurements', 
although another derivation of (28)-here called the interval method and discussed 
in the appendix-may suggest such an interpretation. On the other hand the 'piecing- 
effect' (denoted by E, in section 2) is so small that for all practically possible intervening 
measurements it can be neglected [l l] .  

The generators 5?:(t) and P*( t )  are obtained by substituting Pb by PE or lb  
respectively. For the Hamilton operator as given by equation (2a)  a straightforward 
calculation [ 111 yields? 

0 

Se".(t)p, = -i[H.(t), p.1 -E IK${C;Cn(t )pe + p & ( W n I  (32a) 

g a ( t ) f e  = & ( ( ) f a  /Knl2{en(()foC:+ cnfa6:(t)} (326) 

n 

n 

withS. 

As obvious by equation (32a). the action of the generator So.(.) can be expressed 
in the form 

&(t)p,  = - i {R , ( th  - p , R ( t ) }  (34) 
where (time independence of en assumed) - 

h'.(t) C H e ( [ )  - iD. := He([) -i IK~I'C:?~ 
n 

(35) 

t During these calculations it becomes obvious that the Markov time is of the order of the inverse of the 
(smallest) transition frequency considered. 
$Sincc ~ ~ V ~ ( ~ ) U v m ~  1 one can in general neglect V.(.) in the calculation of ?"(,I, Tlis operator becomes 
therefore time independent. This approximation is made throughout in the following section. 
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is sometimes called the effective Hamilton operator. This yields for To.(.;) the rep- 
resentation 

(36) To.(& t')p,= Uo(t, t')&U;(t, t') 

with 

d -  - &(t, t') = -iR*( t )  Ua(t, t') ue( t, t )  = 1. dt 

4. Illustration by simple examples 

In this section the practical calculation of &(t )  and 3; shall be demonstrated by 
means of four specific models similar to those discussed in the literature to explain 
performed experiments. With the exception of the last all of them belong to the class, 
characterized by condition (22) .  ( Ga could be also calculated under suitable approxima- 
tions.) 

Model A. The laser-driven two-leuel system. 

+ T 8 ( w . - o o )  c -i 9- 
%--WO 1 

=:f(o., w0)C. 

Hence, in the continuum limit { K , } +  K ( . ) ,  one gets 

f i e (  t )  = Ha ( t )  - i lom dw I K  (w)12f(w, 00) c+c 
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By neglecting, as usually justified in quantum optics, the principal value integral and 
with the abbreviation 

r-v[K(wO)lz 
one obtains finally 

fln(r) = (oo-ir)ll)(ll +ia(e-im~tll)(o[ + HC). (38) 

Similar calculations yield 

Sbp. = ~owdwlK(w)l'Cf(w, %)+f*(u,wo)}C~.C' 

= ~ ~ I o ) ( ~ I P ~ I ~ ) ( o I  

= I O ) ( O I ~ ~ P . ~ ~ .  (39) 

The result is of the form (22) with p z  = lO)(O( and A(&) = X p . ,  ,. 
are omitted, and only the results are written down. 

Concerning the following two models details of the calculations, which are similar, 

Model B. The three-level V-system driven by U single laser. 1 
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Model C. 7he three-leoel A-system driven by a single laser. 

(43) 
1 

s : p e  =- {r2,lz)(2i + rl1ii)(il + fi2)(11 + f*li)(21}2(r,~ + rll)~aoo. rZz + rll 
Model D. As model A without rotating-wave approximation, This is the most simple 
model which does not belong to the class (22) and it is obtained by setting l O ) ( l / +  Il)(Ol, 
instead of lO)(ll in model A, for the operator C. Evaluating as above one finds &(GJ 
to be unchanged, but 3; is now given by 

&P. = 10~~012r~,,,+ii~~oir~~~~+io~~iir~,,~. (44) 
The expression on the right seems at first sight questionable, since it is not positive. 
However, in T:(t ,  t')p. as defined by (19) the contribution of the two last terms 
vanishes for t - t'>> 7, = l/oo. Therefore the result coincides with that for model A 
for measurement intervals in the allowed regime. 
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Appendix 

Comparison with the interval method 

The investigations of section 2 were essentially based on the (conditioned) time- 
evolution TJt,  t')~,,, and in section 3 a differential equation for it could be obtained 
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by means of the projector formalism. In principle one can consider another kind of 
time evolution TaA(f, f ’ )pa constructed by successive multiplication of operators T.(.,.) 
calculated for small time increments A. ‘Pieced‘ contracted time-evolution operators 
like this have often been applied in the theory of heat baths [13], and recently were 
used to investigate photon-statistics problems [S, 91. Throughout, however, explicit 
calculations require perturbation theory (Born approximation) and the Markov 
approximation. In this appendix it is shown that such a procedure, called ‘interval 
method’ here, yields a time evolution (approximately) compatible with Ta( t, t ’ )p .  while 
the effects of the piecings are completely washed out. 

One starts by calculating 

To( t+A,  f)p. = T r b ( ( l o  X pb)T(t+A, f)(Pa Xlu)(ul)). (AI)  

In the interaction picture the time evolution (of the composed system, atom+field) 
has the decomposition 

T ( t + A ,  t ) p =  To( t+A,  t)’?(t+A, t ) p  (A2) 
with 

d - ’?( t +  s, t ) p  = -i[( To([, t+s)Hab), ?( t + s, t ) p ]  
d s  

Second-order perturbation calculation yields for the solution of the initial value problem 

F(f, t )p=p.  (A31 

(‘43) 

?([+A, t )p=p- i  ds[(To(t, t + S ) & b ) , P ]  IoA 
- IoAds  losdS’[(To(t, f+s)Hnb),[(To(f, f + S ’ ) f f a b ) r P l ] .  (A41 

If the expression (A4) with p = p .  x l u ) ( u l  is substituted into equation (A2)  and this 
itself into (AI), then a short calculation yields 

T. ( f+A,  f ) ~ .  

= To,( f + A, t )  [ p. - joA ds  1; ds’ To.( t, t + s) 

By performing the Markov approximation (inner integration boundary to infinity 
assuming A >> 7,) this simplifies to 

To([+ A, [ )pa = To.( f + A, t )  ds  To.( t, f + s)G.( f + s)To,( f + 3, t)p. . (A6) 1 
Written differentially it reads 

- T( t +A,  f ) p ,  = -i[ Ha( f + A ) ,  Td f +A, [ ) p o l  - Ga( t + A)Toa( t + A, [ )pa.  (A7) 
a 

aA 
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This shows that the result (A6) may be used either to approximate (iteratively) the 
solution of (28)-(30) for time increments satisfying AllG,IIc< 1 [9] or to determine a 
differential equation for the contracted time evolution [ S ,  131 which, however, i s  
identical with (28). The reason is that due to the Markov approximation the effect of 
the piecing (fictitious measurements) is systematically suppressed. With respect to the 
approaches as [ S ,  91 one has to conclude that the gedanken measurements introduced 
are effectively not performed. 
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